Carbon and Nitrogen Uptake of Calcareous Benthic Foraminifera along a Depth-Related Oxygen Gradient in the OMZ of the Arabian Sea

نویسندگان

  • Annekatrin J. Enge
  • Julia Wukovits
  • Wolfgang Wanek
  • Margarete Watzka
  • Ursula F. M. Witte
  • William R. Hunter
  • Petra Heinz
چکیده

Foraminifera are an important faunal element of the benthos in oxygen-depleted settings such as Oxygen Minimum Zones (OMZs) where they can play a relevant role in the processing of phytodetritus. We investigated the uptake of phytodetritus (labeled with (13)C and (15)N) by calcareous foraminifera in the 0-1 cm sediment horizon under different oxygen concentrations within the OMZ in the eastern Arabian Sea. The in situ tracer experiments were carried out along a depth transect on the Indian margin over a period of 4 to 10 days. The uptake of phytodetrital carbon within 4 days by all investigated species shows that phytodetritus is a relevant food source for foraminifera in OMZ sediments. The decrease of total carbon uptake from 540 to 1100 m suggests a higher demand for carbon by species in the low-oxygen core region of the OMZ or less food competition with macrofauna. Especially Uvigerinids showed high uptake of phytodetrital carbon at the lowest oxygenated site. Variation in the ratio of phytodetrital carbon to nitrogen between species and sites indicates that foraminiferal carbon and nitrogen use can be decoupled and different nutritional demands are found between species. Lower ratio of phytodetrital carbon and nitrogen at 540 m could hint for greater demand or storage of food-based nitrogen, ingestion, or hosting of bacteria under almost anoxic conditions. Shifts in the foraminiferal assemblage structure (controlled by oxygen or food availability) and in the presence of other benthic organisms are likely to account for observed changes in the processing of phytodetritus in the different OMZ habitats. Foraminifera dominate the short-term processing of phytodetritus in the OMZ core but are less important in the lower OMZ boundary region of the Indian margin as biological interactions and species distribution of foraminifera change with depth and oxygen levels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the paleoecological characteristics of Abtalkh Formation at Bahadorkhan Section (Central Kopet-Dagh) based on planktonic and benthic foraminifera

Study of a late Late Santonian to Late Campanian hemipelagic succession from Abtalkh Formation at the Bahadorkhan section (Central Kopet-Dagh) enabled us to verify paleoecology changes based on planktonic and benthic foraminifera assemblage. Bahadorkhan section is consisted of calcareous shale, lime marl, marl, and a few dispersed chalky limestone beds. Upper and lower boundaries of Abtalkh For...

متن کامل

Benthic Nitrogen Loss in the Arabian Sea Off Pakistan

A pronounced deficit of nitrogen (N) in the oxygen minimum zone (OMZ) of the Arabian Sea suggests the occurrence of heavy N-loss that is commonly attributed to pelagic processes. However, the OMZ water is in direct contact with sediments on three sides of the basin. Contribution from benthic N-loss to the total N-loss in the Arabian Sea remains largely unassessed. In October 2007, we sampled th...

متن کامل

The role of benthic foraminifera in the benthic nitrogen cycle of the Peruvian oxygen minimum zone

The discovery that foraminifera are able to use nitrate instead of oxygen as an electron acceptor for respiration has challenged our understanding of nitrogen cycling in the ocean. It was thought before that only prokaryotes and some fungi are able to denitrify. Rate estimates of foraminiferal denitrification have been very sparse and limited to specific regions in the oceans, not comparing sta...

متن کامل

The trophic and metabolic pathways of foraminifera in the Arabian Sea: evidence from cellular stable isotopes

The Arabian Sea is a region of elevated productivity with the highest globally recorded fluxes of particulate organic matter (POM) to the deep ocean, providing an abundant food source for fauna at the seafloor. However, benthic communities are also strongly influenced by an intense oxygen minimum zone (OMZ), which impinges on the continental slope from 100 to 1000 m water depth. We compared the...

متن کامل

Benthic biological and biogeochemical patterns and processes across an oxygen minimum zone (Pakistan margin, NE Arabian Sea)

Oxygen minimum zones (OMZs) impinging on continental margins present sharp gradients ideal for testing environmental factors thought to influence C cycling and other benthic processes, and for identifying the roles that biota play in these processes. Here we introduce the objectives and initial results of a multinational research program designed to address the influences of water depth, the OM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Frontiers in microbiology

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016